GCE Physics - PH1

Mark Scheme - January 2013

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline 1 \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(iv)

(I)

(II)

 \&

Decelerating (1) Gradient changes/decreases or correct use of values from the graph (1)

$$
0.75 \mathrm{~m} \mathrm{~s}^{-1} \text { (unit mark) }
$$

Any tangent at 6 s (1) Speed: $0.55-0.75\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ (1)

No- infinite speed (or equiv) don't accept very large speed Yes- stopped

$$
\begin{aligned}
& \text { Velocity }=\frac{\text { Displacement }}{\text { Time }}(1) ; \text { Displacement }=0 \text { [over } 1 \text { complete } \\
& \text { lap }](1)
\end{aligned}
$$

Question 1 total

 \&

[2]

[1]

[2]

[1]

[1]

[2]

[9]
\end{tabular}

\hline 2 \& (a)

(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

(i)

(ii)

 \&

Resistance $=\frac{p d}{\text { current }}$ (accept: voltage $/$ if V and I written must be qualified)

$V=\mathrm{J} \mathrm{C}^{-1}$ (1); $I=\mathrm{C} \mathrm{s}^{-1}$ (1); Convincing working (1)

Don't accept use of t-award ecf for $3^{\text {rd }}$ mark. Alternative route using power formulae is acceptable.

$$
\begin{aligned}
& I=\frac{V_{\text {in }}}{R_{1}+R_{2}} \\
& V_{\text {out }}=I R_{2}(1) ; I(\text { from (i)) used correctly }
\end{aligned}
$$

Question 2 total

 \&

[1]

[3]

[1]

[2]

[2]

[2]

[11]
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
Straight line through origin. Accept \(F \alpha x\). \\
Area \(=1 / 2 F x(1) ; F=k x\) and clear substitution/manipulation (1) \\
\(F=8.0[\mathrm{~N}]\) (1) or \(\quad k=100\left[\mathrm{~N} \mathrm{~m}^{-1}\right]\) (1) \\
Use of \(1 / 2 F x\) \\
Use of \(1 / 2 k x^{2}\) \\
(i.e \({ }^{1 / 2} \times 8.0 \times 80 \times 10^{-3}\)) (1) \\
(i.e \(\left.\frac{1 / 2}{2} \times 100 \times\left(80 \times 10^{-3}\right)^{2}\right)(1)\) \\
\(=0.32[\mathrm{~J}](1)\) \(=0.32[\mathrm{~J}]\) (1) (ecf for \\
(ecf for \(F\)) derived value of \(k\))
\[
0.32=1 / 2 m v^{2}(\text { ecf })(1) ; \quad v=4.0\left[\mathrm{~m} \mathrm{~s}^{-1}\right]
\] \\
\(\Delta E_{\mathrm{k}}=F d\) understood (1)
\[
d=(0.8+0.4+(2 \pi(0.2))) \text { or } 2.46[\mathrm{~m}](1)
\] \\
\(\Delta E_{\mathrm{k}}=0.03[\mathrm{~J}]\) or \(\left(1 / 2 \times 0.04 \times\left(4^{2}-3.8^{2}\right)\right)(1)(\) ecf from (b) (ii)) \\
\(F=0.013[\mathrm{~N}]\) (1) (ecf for \(d\)) \\
Alternative method using equations of motion and \(F=m a\) acceptable.
\end{tabular}} \& Marks Available \\
\hline 3 \& (a)
(b)

(c) \& (i)
(ii)

(i) \& \& | [1] |
| :--- |
| [2] |
| [3] |
| [2] |
| [4] |
| [12] |

\hline 4 \& (a)

(b) \& (i)
(ii)
(I)
(II)

(i)

(ii) \& | $\begin{aligned} & \text { Correct use of } \left.v^{2}=u^{2}+2 a x \text { (i.e. } 0=6^{2}-2 \times 9.81 \times x\right) \\ & x=1.8[\mathrm{~m}](1) \\ & \text { Total height }=12.8[\mathrm{~m}](1)(\text { ecf for } x) \\ & v^{2}=2 \times 9.81 \times 12.8(\text { ecf }) \quad(1) \text { or suitable alternative } \\ & v=15.9\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1) \\ & t_{\text {up }}=\left(\frac{0-6}{-9.81}\right)=0.6[\mathrm{~s}] \quad(1) \\ & t_{\text {down }}=\left(\frac{15.9(e c f)-0}{9.81}\right)=1.6[\mathrm{~s}] \quad(1) \\ & \text { Total time }=2.2[\mathrm{~s}] \quad(1) \quad \text { (other solutions possible) } \end{aligned}$ |
| :--- |
| (1) Ball only acted upon by force due to gravity / weight is the only force acting (1) Only award $2^{\text {nd }}$ mark if $1^{\text {st }}$ mark correct. |
| (1) Marks are independent. If additional arrows present deduct 1 mark for each extra arrow. |
| (1) |
| Question 4 Total | \& [3] ${ }^{\text {[2] }}$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
Point where entire weight of object acts. Don't accept mass. \\
\(\operatorname{Tan} \theta=40 / 60\) \\
(1); \(\theta=33.7^{\circ}\) \\
(1) \\
\(V=0.6 \times 0.4 \times 0.1\) (1); \(\quad M=\rho \times V\) used correctly (1) \\
\(T \sin \theta\) or equivalent (1) \(\times 1.2\) (1) \(=9.6 \times 9.81 \times 1.8\) (1) \\
\(T=220[\mathrm{~N}]\) (1) \\
\(F=220\) (ecf) \(\cos 40^{\circ}\) or equivalent (1) \\
\(F=169[\mathrm{~N}]\) (1) \\
Accept Pythagoras solution. \\
Question 5 Total
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marks Available \\
[1] \\
[2] \\
[2] \\
[4] \\
[2] \\
[11]
\end{tabular}} \\
\hline 5 \& (a)
(b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \& \\
\hline 6 \& (a) \& (i)
(ii)
(iii)

(i)
(ii)

(iii) \& | Correct and convincing use of $\rho=\frac{R A}{l}$ (including unit conversion) $\begin{align*} & \left(\frac{2000}{11.2}\right)=179 \mathrm{~A} \text { unit mark } \\ & v=\frac{I}{n A e} \text { rearranged (or shown numerically) } \tag{1}\\ & n=6.0 \times 10^{28} \times 3(1) \\ & v=1.55 \times 10^{-5}\left[\mathrm{~m} \mathrm{~s}^{-1}\right](\text { ecf on } I \text { and } n) \end{align*}$ |
| :--- |
| Same (or equivalent) |
| v increased (1) because...; A decreased, I, n, e unchanged by implicaton (1) |
| Increased frequency / more collisions between electrons and lattice / atoms / ions or electrons carry greater kinetic energy (1) leading to increased vibrational / kinetic energy of lattice atoms (1) |
| Question 6 Total | \& [1]

$[1]$

$[3]$
$[1]$
$[2]$
$[2]$

\hline
\end{tabular}

Question			Marking details	Marks Available
7	(a)		V - energy (per coulomb) used in [external] resistor / circuit. (1) E - energy (per coulomb) transferred / supplied by source / in the whole circuit (1) $I r$ - energy (per coulomb) wasted / lost in source / cell / internal resistance (1) Use of 'per coulomb / unit charge' once. (1)	[4]
	(b)	(i) (ii) (iii)	$4[\Omega]$ Gradient attempted e.g. 60/10 (1) (or use of equation ecf from (b) (i)) $\mathrm{emf}=6[\mathrm{~V}]$ (1) $1 / I=4\left[\mathrm{~A}^{-1}\right]$ or by implication (1) $R=20[\Omega] \text {. } 1 \text {) }$ Use of $I^{2} R$ i.e. $(0.25)^{2} \times 20$ (ecf) (1) or correct substitution into both $V=I R$ and $P=I V$ or V^{2} / R $P=1.25[\mathrm{~W}]$	[1] [2] [4]
	(c)	(i) (ii) (iii)	$\begin{align*} & \text { emf }=12.0[\mathrm{~V}] \text { (ecf) and } r=8.0[\Omega] \text { (ecf) } \\ & R=52.0[\Omega] \text { (ecf) } \\ & \text { y intercept }(r \rightarrow 8.0 \Omega(\text { ecf) })(1) \\ & \text { Precise gradient e.g. through }(5,52) \text { (ecf) } \tag{1} \end{align*}$	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[2]} \end{aligned}$
			Question 7 Total	[15]

