GCE Physics - PH1

Mark Scheme - January 2013

Que	estion		Marking details	Marks Available
1	(a)	(i) (ii) (iii) (iv)	Decelerating (1) Gradient changes/decreases or correct use of values from the graph (1) 0.75 m s ⁻¹ (unit mark) Any tangent at 6 s (1) Speed: 0.55 – 0.75 [m s ⁻¹] (1)	[2] [1] [2]
		(I) (II)	No- infinite speed (or equiv) don't accept very large speed Yes- stopped	[1] [1]
	(b)		$Velocity = \frac{Displacement}{Time}$ (1); Displacement = 0 [over 1 complete lap] (1)	[2]
			Question 1 total	[9]
2	(a)	(i)	Resistance = $\frac{pd}{current}$ (accept: voltage / if V and I written must be	[1]
		(ii)	qualified) $V = JC^{-1}(1)$; $I = C s^{-1}(1)$; Convincing working (1) Don't accept use of t -award ecf for 3^{rd} mark. Alternative route using power formulae is acceptable.	[3]
	(b)	(i)	$I = \frac{V_{in}}{R_1 + R_2}$	[1]
			$V_{\text{out}} = IR_2$ (1); I (from (i)) used correctly (1)	[2]
	(c)	(i) (ii)	Any parallel combination shown (1); $40[\Omega]$ used correctly (1)	[2]
			Resistor combination shown (1) ecf from (c) (i)	
			$\begin{array}{c c} 2.4 [V] \text{ or } V_{\text{out}} \text{ labelled} \\ \text{correctly (1)} \end{array}$	[2]
			Question 2 total	[11]

Question			Marking details	Marks Available
3	(a) (b)	(i) (ii) (i)	Use of $\frac{1}{2} Fx$ Use of $\frac{1}{2} kx^2$	[1] [2]
			(i.e $\frac{1}{2}$ x 8.0 x 80 x 10 ⁻³) (1) (i.e $\frac{1}{2}$ x 100 x (80 x 10 ⁻³) ²) (1) = 0.32[J] (1) = 0.32[J] (1) (ecf for derived value of k)	[3]
		(ii)	$0.32 = \frac{1}{2} mv^2 \text{ (ecf)} (1); v = 4.0 \text{ [m s}^{-1}] (1)$	[2]
	(c)		$\Delta E_{\rm k} = Fd$ understood (1) $d = (0.8 + 0.4 + (2\pi(0.2)))$ or 2.46 [m] (1) $\Delta E_{\rm k} = 0.03$ [J] or (½ x 0.04 x (4² – 3.8²)) (1) (ecf from (b) (ii)) $F = 0.013$ [N] (1) (ecf for d) Alternative method using equations of motion and $F = ma$ acceptable.	[4]
			Question 3 Total	[12]
4	(a)	(i)	Correct use of $v^2 = u^2 + 2ax$ (i.e. $0 = 6^2 - 2 \times 9.81 \times x$) (1) $x = 1.8 \text{ [m]}$ (1) Total height = 12.8 [m] (1) (ecf for x)	[3]
		(ii) (I) (II)	$v^2 = 2 \times 9.81 \times 12.8$ (ecf) (1) or suitable alternative $v = 15.9 \text{ [m s}^{-1}\text{]}$ (1) $t_{\text{up}} = \left(\frac{0-6}{-9.81}\right) = 0.6 \text{ [s]}$ (1)	[2]
			$t_{\text{down}} = \left(\frac{15.9(ecf) - 0}{9.81}\right) = 1.6[s] (1)$ Total time = 2.2[s] (1) (other solutions possible)	[3]
	(b)	(i)	(1) Ball only acted upon by <u>force due to gravity / weigh</u> t is the only force acting (1) Only award 2 nd mark if 1 st mark correct.	[2]
		(ii)	(1) Marks are independent. If additional arrows present deduct 1 mark for each extra arrow.	[2]
			Question 4 Total	[12]

Que	stion	T	Marking details	Marks Available
5	(a)	(i) (ii)	Point where entire <u>weight</u> of object acts. Don't accept mass. Tan $\theta = 40/60$ (1); $\theta = 33.7^{\circ}$ (1)	[1] [2]
	(b)		$V = 0.6. \times 0.4 \times 0.1$ (1); $M = \rho \times V$ used correctly (1)	[2]
		(ii)	T = 220 [N] (1)	[4]
		(iii)	F = 220 (ecf) cos40° or equivalent (1) F = 169 [N] (1) Accept Pythagoras solution.	[2]
			Question 5 Total	[11]
6	(a)	(i)	Correct and convincing use of $\rho = \frac{RA}{l}$ (including unit conversion)	[1]
		(ii)		[1]
		(iii)	$v = \frac{I}{nAe}$ rearranged (or shown numerically) (1)	
			$n = 6.0 \times 10^{28} \times 3 (1)$ $v = 1.55 \times 10^{-5} \text{ [m s}^{-1]} (\text{ecf on } I \text{ and } n) (1)$	[3]
	<i>(b)</i>	(i)	Same (or equivalent)	[1]
		(ii)	v increased (1) because; A decreased, I,n,e unchanged by implication (1)	[2]
		(iii)	Increased frequency / more collisions between electrons and lattice / atoms / ions or electrons carry greater kinetic energy (1) leading to increased vibrational / kinetic energy of lattice atoms (1)	[2]
			Question 6 Total	[10]

Question			Marking details	Marks Available
7	(a)		V- energy (per coulomb) used in [external] resistor / circuit. (1) E- energy (per coulomb) transferred / supplied by source / in the whole circuit (1) Ir- energy (per coulomb) wasted / lost in source / cell / internal resistance (1)	
			Use of 'per coulomb / unit charge' once. (1)	[4]
	(b)	(i) (ii)	$4[\Omega]$ Gradient attempted e.g. $60/10$ (1) (or use of equation ecf from (b) (i))	[1]
		(iii)	emf = 6 [V] (1) 1/I = 4 [A ⁻¹] or by implication (1) $R = 20$ [Ω] (1) Use of I^2R i.e. $(0.25)^2 \times 20$ (ecf) (1) or correct substitution into both $V = IR$ and $P = IV$ or V^2/R	[2]
			P = 1.25[W] (1)	[4]
	(c)	(i) (ii) (iii)	emf = $12.0 [V]$ (ecf) and $r = 8.0 [\Omega]$ (ecf) $R = 52.0 [\Omega]$ (ecf) y intercept $(r \rightarrow 8.0 \Omega \text{ (ecf)})$ (1)	[1] [1]
		(111)	Precise gradient e.g. through (5,52) (ecf) (1)	[2]
			Question 7 Total	[15]